Análise de suporte ao cliente com o Gemini 2.5 Pro e o CrewAI

O CrewAI é uma estrutura para orquestrar agentes autônomos de IA que colaboram para alcançar metas complexas. Ele permite definir agentes especificando papéis, metas e histórias de fundo e, em seguida, definir tarefas para eles.

Este exemplo demonstra como criar um sistema multiagente para analisar dados de suporte ao cliente e identificar problemas e propor melhorias de processo usando o Gemini 2.5 Pro, gerando um relatório destinado a ser lido por um diretor de operações (COO).

O guia mostra como criar uma "equipe" de agentes de IA que podem realizar as seguintes tarefas:

  1. Buscar e analisar dados de suporte ao cliente (simulados neste exemplo).
  2. Identifique problemas recorrentes e gargalos de processo.
  3. Sugerir melhorias práticas.
  4. Reúna as descobertas em um relatório conciso adequado para um COO.

Você precisa de uma chave da API Gemini. Se você ainda não tiver, peça uma no Google AI Studio.

pip install "crewai[tools]"

Defina a chave de API Gemini como uma variável de ambiente chamada GEMINI_API_KEY e, em seguida, configure o CrewAI para usar o modelo Gemini 2.5 Pro.

import os
from crewai import LLM

# Read your API key from the environment variable
gemini_api_key = os.getenv("GEMINI_API_KEY")

# Use Gemini 2.5 Pro Experimental model
gemini_llm = LLM(
    model='gemini/gemini-2.5-pro-preview-06-05',
    api_key=gemini_api_key,
    temperature=0.0  # Lower temperature for more consistent results.
)

Definir componentes

Os aplicativos da CrewAI são criados usando Ferramentas, Agentes, Tarefas e a própria Equipe. Cada um deles é explicado nas seções a seguir.

Ferramentas

As ferramentas são recursos que os agentes podem usar para interagir com o mundo externo ou realizar ações específicas. Aqui, você define uma ferramenta de marcador de posição para simular a busca de dados de suporte ao cliente. Em um aplicativo real, você se conectaria a um banco de dados, API ou sistema de arquivos. Para mais informações sobre ferramentas, consulte o guia de ferramentas da CrewAI.

from crewai.tools import BaseTool

# Placeholder tool for fetching customer support data
class CustomerSupportDataTool(BaseTool):
    name: str = "Customer Support Data Fetcher"
    description: str = (
      "Fetches recent customer support interactions, tickets, and feedback. "
      "Returns a summary string.")

    def _run(self, argument: str) -> str:
        # In a real scenario, this would query a database or API.
        # For this example, return simulated data.
        print(f"--- Fetching data for query: {argument} ---")
        return (
            """Recent Support Data Summary:
- 50 tickets related to 'login issues'. High resolution time (avg 48h).
- 30 tickets about 'billing discrepancies'. Mostly resolved within 12h.
- 20 tickets on 'feature requests'. Often closed without resolution.
- Frequent feedback mentions 'confusing user interface' for password reset.
- High volume of calls related to 'account verification process'.
- Sentiment analysis shows growing frustration with 'login issues' resolution time.
- Support agent notes indicate difficulty reproducing 'login issues'."""
        )

support_data_tool = CustomerSupportDataTool()

Agentes

Os agentes são os trabalhadores de IA individuais da equipe. Cada agente tem um role, goal, backstory, llm atribuído e tools opcional. Para mais informações sobre agentes, consulte o guia de agentes da CrewAI.

from crewai import Agent

# Agent 1: Data analyst
data_analyst = Agent(
    role='Customer Support Data Analyst',
    goal='Analyze customer support data to identify trends, recurring issues, and key pain points.',
    backstory=(
        """You are an expert data analyst specializing in customer support operations.
        Your strength lies in identifying patterns and quantifying problems from raw support data."""
    ),
    verbose=True,
    allow_delegation=False,  # This agent focuses on its specific task
    tools=[support_data_tool],  # Assign the data fetching tool
    llm=gemini_llm  # Use the configured Gemini LLM
)

# Agent 2: Process optimizer
process_optimizer = Agent(
    role='Process Optimization Specialist',
    goal='Identify bottlenecks and inefficiencies in current support processes based on the data analysis. Propose actionable improvements.',
    backstory=(
        """You are a specialist in optimizing business processes, particularly in customer support.
        You excel at pinpointing root causes of delays and inefficiencies and suggesting concrete solutions."""
    ),
    verbose=True,
    allow_delegation=False,
    # No tools needed, this agent relies on the context provided by data_analyst.
    llm=gemini_llm
)

# Agent 3: Report writer
report_writer = Agent(
    role='Executive Report Writer',
    goal='Compile the analysis and improvement suggestions into a concise, clear, and actionable report for the COO.',
    backstory=(
        """You are a skilled writer adept at creating executive summaries and reports.
        You focus on clarity, conciseness, and highlighting the most critical information and recommendations for senior leadership."""
    ),
    verbose=True,
    allow_delegation=False,
    llm=gemini_llm
)

Tarefas

As tarefas definem as atribuições específicas para os agentes. Cada tarefa tem um description, expected_output e é atribuída a um agent. As tarefas são executadas sequencialmente por padrão e incluem o contexto da tarefa anterior. Para mais informações sobre tarefas, consulte o guia de tarefas da CrewAI.

from crewai import Task

# Task 1: Analyze data
analysis_task = Task(
    description=(
        """Fetch and analyze the latest customer support interaction data (tickets, feedback, call logs)
        focusing on the last quarter. Identify the top 3-5 recurring issues, quantify their frequency
        and impact (e.g., resolution time, customer sentiment). Use the Customer Support Data Fetcher tool."""
    ),
    expected_output=(
        """A summary report detailing the key findings from the customer support data analysis, including:
- Top 3-5 recurring issues with frequency.
- Average resolution times for these issues.
- Key customer pain points mentioned in feedback.
- Any notable trends in sentiment or support agent observations."""
    ),
    agent=data_analyst  # Assign task to the data_analyst agent
)

# Task 2: Identify bottlenecks and suggest improvements
optimization_task = Task(
    description=(
        """Based on the data analysis report provided by the Data Analyst, identify the primary bottlenecks
        in the support processes contributing to the identified issues (especially the top recurring ones).
        Propose 2-3 concrete, actionable process improvements to address these bottlenecks.
        Consider potential impact and ease of implementation."""
    ),
    expected_output=(
        """A concise list identifying the main process bottlenecks (e.g., lack of documentation for agents,
        complex escalation path, UI issues) linked to the key problems.
A list of 2-3 specific, actionable recommendations for process improvement
(e.g., update agent knowledge base, simplify password reset UI, implement proactive monitoring)."""
    ),
    agent=process_optimizer  # Assign task to the process_optimizer agent
    # This task implicitly uses the output of analysis_task as context
)

# Task 3: Compile COO report
report_task = Task(
    description=(
        """Compile the findings from the Data Analyst and the recommendations from the Process Optimization Specialist
        into a single, concise executive report for the COO. The report should clearly state:
1. The most critical customer support issues identified (with brief data points).
2. The key process bottlenecks causing these issues.
3. The recommended process improvements.
Ensure the report is easy to understand, focuses on actionable insights, and is formatted professionally."""
    ),
    expected_output=(
        """A well-structured executive report (max 1 page) summarizing the critical support issues,
        underlying process bottlenecks, and clear, actionable recommendations for the COO.
        Use clear headings and bullet points."""
    ),
    agent=report_writer  # Assign task to the report_writer agent
)

Gola redonda

O Crew reúne os agentes e as tarefas, definindo o processo de fluxo de trabalho (como "sequencial").

from crewai import Crew, Process

# Define the crew with agents, tasks, and process
support_analysis_crew = Crew(
    agents=[data_analyst, process_optimizer, report_writer],
    tasks=[analysis_task, optimization_task, report_task],
    process=Process.sequential,  # Tasks will run sequentially in the order defined
    verbose=True
)

Run the Crew

Por fim, inicie a execução da equipe com as entradas necessárias.

# Start the crew's work
print("--- Starting Customer Support Analysis Crew ---")
# The 'inputs' dictionary provides initial context if needed by the first task.
# In this case, the tool simulates data fetching regardless of the input.
result = support_analysis_crew.kickoff(inputs={'data_query': 'last quarter support data'})

print("--- Crew Execution Finished ---")
print("--- Final Report for COO ---")
print(result)

O script será executado. O Data Analyst vai usar a ferramenta, o Process Optimizer vai analisar as descobertas e o Report Writer vai compilar o relatório final, que será impresso no console. A configuração verbose=True mostra o processo de pensamento detalhado e as ações de cada agente.

Para saber mais sobre o CrewAI, confira a introdução ao CrewAI.